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Logic Development System Accelerates
Microcomputer System Design
This expandable, flexible system offers a complete sel of
facilities for generating and debugging microprocessor-
sysfem hardware and software. lt's designed with next-
generation VLSI circuits in mind.

by Thomas A. Saponas and Brian W. Kerr

ICROPROCESSORS HAVE PROVIDED signifi-
cant improvements in the performance and flex-
ibility of much of today's electrical and mechani-

cal hardware. One consequence is that our approach to
designing products has had to change, and so have the
skills of the engineers responsible for these products. The
design team of a microprocessor-based product might be
more than half software designers. It is not unusual for a
product's definition to change in the very late design stages
in spite of excellent research and definition at the begin-
ning. Then the flexibility of the software is the vehicle for
accommodating such changes.

Because the microprocessor is only one piece of a com-
plete system, it represents a software design problem unlike
most computer systems. The processor is usually an inte-
gral part of some hardware that has nothing to do with
computation. In some cases i t  is simply being used as a
programmable logic element or for control of the human
interface with some process. These differences make the
conventional tools for generating and debugging hardware
and software incomplete for the task facing the micro-
processor system designer. The 64000 Logic Development
System was meant to provide a complete solution to this
task in one package, and to make significant contributions
to the efficiency of designers' time.

Architecture
A basic 64000 Logic Development System consists of one

Model 64100A Development Station with a Model 649404
Magnetic Tape Cartridge Unit installed, compatible HP
hard disc and printer, and software packages to edit, assem-
ble, link, and store program modules. Adding an emulator
option and up to 64K bytes of independent emulation
memory adds the download function through emulation,
which is the standard tool for exercising, debugging, and
integrating hardware and software in the early develop-
ment phases. Further assistance in troubleshooting the
target system is gained by adding Model 64300A Logic
Analyzer, which monitors activity on the address, data, and
control buses of the target microprocessor system. As pro-
gram modules are completed, they may be mapped into the
target system's random-access memory, or with Model
645004 PROM Programming System, they can be down-
Ioaded into one of many widely used programmable read-
only memories (PROMs). The system may be expanded to
accommodate larger design teams or multiple design efforts

by adding up to five more development stations (see Fig. r).

Development Station
The development station keyboard and display (see Fig.

2) provide the interface between the operator and the logic
development system. Operating systems, input/output,
keyboard, display, and the development station bus are
managed by the independent host processor and memory.

Fig. 1. Ihe 64000 Logic Development System consists of at
least one 641 00A Development Station , a hard disc, and a line
printer. The system can be expanded to as many as s/x sla-
tions. Each stalion has lls own processor.
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CFT provides 25 rows
by 80 columns of
characters, (Display can be
3hifted to reveal addilional
columns.)

Di.ected syntax tor
on-lino documontation
is provided throlgh
softkoys that ar6
defined by the
opemting

Full ASCII keyboard with
addltional control keys and
special sottkeys d6tin6d
undor Plogram control.

Ten card slots are availabls
tor options.

I

Host procesaot system
implemented wlth 16-bii
procesaor, 64K ot host
memory, and l/o control
managea lhe oPerating
system, VO transactlons, and
system data lransiers on the
developmeni station bus.

PROM programmer consistg
of univelsal programmer
eontiol card and PROM
personality intertace unlt.

The host processor in each 64100A Development Station is
a field-proven 16-bit processor manufactured by HP.l Much
of the other hardware is adapted from other HP products.
However, the emulator option and the PROM programmer
are new and are discussed in detail elsewhere in this issue.

The development station's easily accessed card cage has
slots to house the circuitry for the various system options.
The first three slots of the card cage are occupied by the
three cards of the host system, leaving the remaining ten
slots available for system options. The development station
bus is universal, and options may be placed in any slot. The
development station bus carries address, data, and control
signals between the host processor system and option card
positions.

Each option card can identify itself to the host processor.
Thus the option software is self-configuring. Communica-
tion with the options is via a 32K-byte memory address
space window. When a card is addressed by the host one of
three bank switch modes is also set, thereby expanding this
window to an effective 96K bytes per option card.

Fig. 3 is a map of the entire 12BK-byte address space of the
host processor including the 32K-byte window. The dis-
play memory is an integral part of the program RAM, mak-
ing possible the rapid display update required for such
things as tracking softkeys and a screen-mode editor. The
ROM space in the system is used for the bootstrap programs,
for some frequently used utilities, and for the mainframe
self-test software. In the current version ofthe 640004 sys-
tem, 16K bytes of ROM is unused and reserved for future
enhancements. All of the operating software resides in the
RAM area and is segmented so that only the current task is
in memory.

The emulation system uses a separate emulation bus be-

4 lEwretr-plc<ARD JoURNAL ocroBER i98o

tween emulation control, emulation memory, and analysis
cards. A second high-speed bus connects emulation con-
trol and emulation memory, and a third bus may be re-
quired for inpuUoutput in some modules and configura-
tions (see Fig.  ).

Architecture Advantages
The architecture of the 64000 Logic Development System

offers several advantages. Each user has a dedicated proces-
sor and memory, not just a terminal. Therefore, as stations
are added, so is computing power. By contrast, with
timesharing systems the user is required to buy sufficient
computing power with the very first terminal to support the
ultimate size of the system. Philosophically, it is also more

32K-Byre BOM

32K-Byte YO

64K-Byre RAM

Tape cartridge unit with
225K-byte capacity tor source
tile backup, sy9t6m program
entry and tile backup.

Fig. 2. Model 64100A Develop-
ment Station includes keyboard,
display, and host processor. Op-
tions include PROM programmers
and emulators for various micro-
processors, a logic analyzer, and
a tape controller and drive.

Fig. 3. Host processor memory map.



Disc,
Llno Printers, --

Other 64100As

l/O Dlsplay Control Bus

Slot #1

Development Station Bus

reasonable to present to the user a response time that is
more a function of the task, which is the case with distrib-
uted processing, than to have the response time determined
by the total system loading, as in a timesharing system. The
64000 network can also be expanded to include large cen-
tral data bases or additional 64000 clusters using the
RS-232-C port contained in each station.

By sharing peripherals, it is much easier to justify
higher-performance units than when each user has a dedi-
cated set. Users get not only higher performance but also the
ability to develop software jointly sharing the same data
base. Experience has shown that as the software tools im-
prove and the efficiency of programmers increases, the
need for disc space rapidly outpaces the original estimates
of capacity. Also, with the text editing features of the system
providing a convenient way to maintain documentation, a
further burden is placed on disc capacity. At HP's Colorado
Springs Division, for example, we are now using two to five
megabytes of disc space per user per year, compared to
approximately one megabyte before these tools were avail-
able. The 64000 System expands easily to accommodate
such changes.

Operation
At power-up the host processor interrogates a rear-panel

switch to determine the ROM program to execute. There are
four selectable modes: system bus, local mass storage,
ROM, or performance verification. The performance verifi-
cation mode exercises all of the mainframe hardware, in-
cluding the memory, tape drive, RS-232-C port, and system
bus. The other three modes are bootstrap programs from
three sources. The normal mode of operation is to boot from
the hard disc, which is on the system bus. The program that
is loaded then performs a poll to determine all of the devices

Emulation Bus as Required

UO Bus as
Required

slot #13

16 Address/l6 Data/Control/Supplies

Option Cards
Tape Controller and Drive (Uses l/O Bus)
Emulator (Uses Emulation Bus)
Emulation Memory and Control (Uses Emulation Bus)
Analysis (Uses Emulation Bus)
PROM Programmer

on the bus, configures the software UO drivers based on that
poll, and displays a system map. Eight softkey labels are
displayed at the bottom of the display indicating the vari-
ous functions available. The system is now awaiting a
command and a status message indicates that state. To
perform an assembly of a source file, for example, the
softkey labeled assemble is pushed, followed by the name of
the file to be assembled. The editor, compiler, and linker all
use this same syntax.

Emulation
A challenging aspect of microprocessor system design is

the lack of a friendly run time environment for debugging
software and hardware. If, for example, the user is develop-
ing a microprocessor-controlled meat scale, the product
will not have peripherals such as CRT, keyboard, disc, and
printer to help the debugging process. Because of the direct
interaction of hardware and software, the techniques used
in computer  development-hal t ing,  s ingle-stepping,
dumping registers, and software tracing-might so perturb
the system that the measurement obtained is meaningless.
Because the completed system is usually read-only-
memory-based, a convenient software prototyping envi-
ronment is also essential so that software can be tested and
developed before being committed to ROM.

The 64000 emulator option is designed to imitate the
microprocessor in the user's system and provide all the
necessary debugging facilities. The emulator is used by
removing the microprocessor to be emulated from the user's
hardware and plugging in the probe from the 64000 System
in its place. The user then specifies the memory area to be
taken from the user system and that to be provided by the
emulator. The answers to these configuration questions are
automatically stored in a file so that when the emulator is

---l!tril@
@

I
I
I

Fig. 4. The hosl processor and the microprocessor being emulated have independent buses
and can run simultaneously. Thus software development can be concurrent with emulation.
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used later with the same configuration only the file name
needs to be specified. The emulator can be used before any
user hardware exists by simply specifying the internal
clock and all emulation memory. Because the emulator has
access to the display, disc, printer, and keyboard, much
software development can take place before the user
hardware is ready.

In the 64000 System, we have completely separated the
emulation processor bus from the host environment (see
Fig. a). This allows passive monitoring of the execution of
software without stopping the process. Because of this sep-
aration it is also possible to continue emulation while
software development is occurring on the same station, thus
potentially doubling the use. The two buses are so inde-
pendent that the prototype containing the emulator probe
can be powered down and then up without affecting the
host system. Even the data stored in the emulation memory
remains unchanged and the processor simply goes through
its normal power-up sequence.

Another important benefit of this architecture is the fu-
ture expandability of emulation. The host processing sys-
tem puts no reshictions on the speed or word length of the
processor being emulated. Future microprocessors will cer-
tainly be faster and more powerful, so it is important to
allow for this to preserve the capital investment in the
development system.

The emulator option for the 64000 Logic Development
System is described in the article beginning on page 13.

Directed-Syntax Softkeys Provide Friendly Interface
Since a substantial part of a microprocessor system de-

signer's time is spent at the keyboard of a microprocessor

Fig. 5. Constructing a command using the 64000 System's
directed syntax softkeys. (a) The user has pressed trc and
nowsees the softkey labels shown here. (b) fhe userpresses
drectary and sees these new labels. (c) The user continues to
construct the command by pressng ail Jircs. (d) The complete
syntactically correct command calls for a listing of all files
modified after August 28, 1980.
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development system, ease of use is very important. By
means of directed-syntax softkeys, the 64000 leads the new
user through an often bewildering maze of tools. The use of
a random-access display further simplifies the operator in-
terface to provide a feeling that the human is in control and
not the machine.

Eight unmarked keys immediately below the CRT are
labeled by the CRT. These softkeys reflect the complete set
of allowable entries and change with each keystroke to
reflect the next expected keyword or data in a command. If
the user enters only the information prompted by the
softkeys the syntax is guaranteed correct. Conversely, any
entry not shown in the softkey labels will result in a syntax
error. Thus the processor is always telling the user what it
expects, avoiding the usual guessing game, "You enter a
command and I'll tell you if it's right." In addition to
eliminating the guessing game, the softkeys provide exactly
the same interface for all operations.

Fig. 5a shows an example using the directory command,
which can consist simply of the keyword directory or several
options. In Fig. 5b the directory softkey has been pushed and
the next allowable alternatives are shown:

<FILE> user file name
all--files all disc files
rec---files all recoverable files
tapefiles all tape files
listfile specify an alternate listing file.

In Fig. 5c, the all-files option is selected and the labels
again change to reflect other options. The complete com-
mand shown in Fig. 5d calls for all of the files modified after
August 28, l,gBO to be listed on the line printer.

If the cursor is moved to edit the command, the labels
change to reflect the options available at that point in the
line. If a softkey is pressed when the cursor is under any
character in a keyword, the entire keyword is replaced by
the new one and the line is expanded or contracted to
accommodate the new entrv.

Software
)ust as important as the hardware architecture in a com-

plete solution is the software package. 64000 software cur-
rently available includes the following modules, some of
which come in several versions to accommodate different
microprocessors and languages: monitor, multiprocessing
operating system, file manager, editor, assembler, com-
piler, linker, emulator, PROM programmer, and hardware
self test.

Since users of the system can range everywhere from the
expert digital hardware designer to one with no previous
software experience, the 64000 system is designed to pro-
vide considerable capability for the experienced software
designer, and through the use of the directed-syntax
softkeys, to give the new user access to the full capability of
the system, not just the subset that is frequently used and
remembered. To further enhance the convenience of the
system an effort was made to provide a uniform. syntax and
feature set in all aspects of the development tools. For
example, numeric constants can be specified in decimal,
hexadecimal, octal, or binary in the assembler, compiler,
linker, emulator, PROM programmer, monitor, and editor.



The rules for variable names are the same for the assembler,
compiler, linker, and emulator. The feature set for all of the
above modules also remains the same for each micropro-
cessor, so that the learning curve for a new processor is
much shorter. In some cases the same person has to work
with more than one processor type simultaneously, so this
approach becomes essential to reduce confusion.

With these features combined with the performance of a
16-bit processor per user and a high-speed hard disc, the
turnaround cycle for changes is substantially reduced. As
an example, it is possible to edit a file to make corrections,
assemble that file. link it to other modules, and then execute

the new code on the emulator in one minute. This level of
performance encourages proper maintenance of source
programs instead of memory patching to fix a problem.
The Editor

Perhaps the most important part of a development sys-
tem's operator interface is the editor. The functioning of the
editor provides the most convincing argument for a random
access display. The ability to modify the text by inserting,
deleting, or overtyping and see the changes on a key-by-key
basis gives the confident feeling of absolute control.

The importance of a symmetric instruction set is just
being understood in the microprocessor world, but the

Resource Sharing in the Logic Development System

by Alan J. DeVilbiss

A 64000 Logic Development System is ordered as Model 64001S,
with the options wanted l isted separately. A 64001S System consists,
at a minimum, of one 64100A Development Stat ion, a disc memory,
and a magnetic tape cartr idge drive. A maximum of six 641004
Development Stat ions, a printer, and eight disc drives can be con-
nected on a single l /O bus,

The operating system software executing in the host processor of
each 64100A is implemented as a single-tasking system, responding
to its keyboard inputs independently of any other 64'100A stations,
except when two or more stations require access to a shared re-
source simultaneously (e.9., a disc memory or the printer).  The use of
these shared resources must be coordinated. The sharing protocol is
simple, minimizing overhead in the operating system and reducing
the number of operations that must be recovered in case of a system
fault.  Specif ical ly, the shared resources are:
1, Access to a disc memory (excludes directory)
2. Access to read or modify a disc directory
3. Access to the orinter.

The mechanical and electrical protocol used on the 64000 l/O bus
is compatible with the HP Interlace Bus, or HP-IB (IEEE Standard
4BB-1978). However, in the 64000 System context, messages are
restricted to those needed for system operation. For example, l/O
drivers and message protocols that would allow direct user control of
interface message generation are not available. Therefore, only sup-
ported disc memories and printers and other 64100A stat ions may be
connected to a 64100A stat ion.

The HP-IB standard was selected because of the existence of
compatible disc memories and printers and a related family of
reliable components (integrated interface electronics, connectors,
and cables).

Each 64100A station can operate on the HP-lB as an active control-
ler, talker, or l istener. The current act lve control ler monitors the state
of the network-that is, which 64100A stat ions are using or are
wait ing to use a shared resource. The active control ler has the exclu-
sive right to use the l/O bus until control is passed to another 64.100A.
However, a resource reserved by another 64100A may not be used.
Drsc accesses not involving a disc directory access may be made by
the active controller without restriction, Directory and printer access-
es are the only two resources that must be reserved. Use of these
resources is regulated by queues resident in the active controller for
each function. The HP-lB address (from 2 to 7) corresponding to each
64100A is used as a name in the queues, with 0 serving as the nul l
entry. The head of each queue has the exclusive r ight to use the
resource. Addresses within the queue indicate 64100A stat ions wait-

ing for the resource. Only the active control ler can modify the queue
by removing i ts address from the head of the queue, Al l  other entr ies
are moved up by one position when the active controller is finished
with the resource. The active control ler can also replace the f irst nul l
entry in the queue with i ts own address when i t  requires the resource.

The active control ler may modify the queues and make one disc
access (a read or write of up to 4096 bytes, typically) and fill the
printer buffer if it is at the head of the printer queue. Then control must
be passed if any other 641 00A has a pending l/O request. The active
control ler conducts a paral lel pol l .  l f  no other 64100A responds, the
current act ive control ler remains active control ler and can continue
with its own l/O as required. Affirmative poll response from another
64100A indicates a request to become active control ler. l f  more than
one 64100A responds, the address of the responding 64100A next
higher (modulo B) than the current act ive control ler is selected.

The selected 64100A is sent an eight-byte message indicating the
current state of the directory and printer queues, and then the Take
Control interface message is sent to that 64100A. The selected
64100A becomes active control ler and may use the l /O bus and/or
modify the queues.

On each 64000 system, one and only one 64100A is designated as
master control ler. This unit  is responsible for ini t iat ing system activi ty
by becoming the first active controller when the system is powered-
on. Only this unit  may assert the Interlace Clear message, and there-
fore it is responsible for restarting a system that has experienced a
partial power failure or a disruptive hardware or software fault.

When a 64100A powers on, it must first load its operating system
from the system disc at l io address 0, unit  0. To accomplish this
without disturbing a f unctioning system if  this 64.1 00A is entering late,
the nonactive controller status is selected at power-up, and lio bus
control is requested by affirmative response to any parallel poll by an
active control ler. l f  the unit is not master control ler, i t  must wait unti l
control is passed to i t  from another 64100A. l f  the 64100A is desig-
nated master controller, it waits for about three seconds (a worst-
case delay for a functioning system), asserts Interface Clear and
becomes the active control ler.

Once a 641004 station has become an active controller and
loaded its operating system software from system disc memory, it
executes a program to identi fy al lother devices connected to the l /O
bus at that time. The results of that orocedure are used to control
generation of tables in the disc, printer, and network l/O drivers to
make proper use of the devices attached to the network.

Each disc memory identi f ied is cataloged by l /O address, disc unit
number, type (7905, 7906, 7910, 7920,7925), directory location and
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size, and record size. A logical unit number is assigned for each
disc. The results of the l/O identification are listed on the 64100 display
for reference and to aid in debugging a maliunctioning system.

This architecture makes it easy to change the number of 64100A
development stat ions, the number and/or type of disc drives, and
the printer. To effect a change, the system is powered off, recon-
nected and powered back on. No user-directed change in software is
neeoeo.

Fauh Recovery
Recovery features have been implemented to lessen the effects of

system faults. For example, it would be undesirable if low power on
one 64100A station aborted an edit session on another station. All l/O
operations have time-outs assigned, with appropriate recovery pro-

cedures in the event of malJunction. Disc operations that can't com-
plete are retried. lf a pass of control doesn't complete within the
allotted time, the process is aborted and the previous active con-
troller resumes control status.

The master  cont ro l le r  assumes a  sys tem moni to r  func t ion .
Whenever the master controller passes control a three-second timer
is started. lf this timer expires, control must be requested by alfirma-
tive poll response, even if the master controller has no pending l/O
request. lf another three seconds go by without a response, the active
controller is presumed to have crashed or powered off, and the
master controller asserts the Interface Clear message and becomes
active controller.

Whenever the master controller becomes active controller by lnter-
face Clear, the network queues are initialized to the nullstate, a restart

flag is set and the queues and control are passed around the network
one t ime, independent of l /O requests. The restart f lag inhibits normal
l/O activity. Each 64100A is given the opportunity to take either the
directory or the printer queue head il its internal state indicates it had
this position before the restart. This process minimizes the effects of
the loss of network state information by a crash of the active controller
while another 64100A is modifying the directory or using the printer.
When control is returned to the master controller, the restart flag is
cleared and normal operation resumes. Time-outs in the printer and
network drivers of 64100A stations that were waiting for the directory
or the printer cause them to reenter the network queues. The order in
the queues may be changed but everyone ultimately is serviced.

Alan J. DeVilbiss
Al DeVilbiss has been a circuit  and
software designer with HP since 1965.
A native of Roanoke, Louisiana, he re-
ceived his BSEE degree f rom Louisiana
Tech University in 1960 and his MSEE
degree from California Institute of
Technology in 1961 . Before coming to
HP he designed f l ight computers for
lour years. Two patents, on electronic
ignit ion and vert ical ampli f ier circuits,
have resulted from his work. Al is mar-
r ied. has two chi ldren. and l ives in Col-
orado Springs, Colorado,

same motivation also exists for symmetry in an editor com-
mand set. The first step in the editing process is usually
positioning to an area in the file of interest. In the 64000
there are no artificial constraints on file size or workspace
use, and positioning can be performed by rolling the text up
or down, moving the cursor up or down, paging up or
down, randomly by specifying a line number, or searching
for a character string in the forward or reverse direction. All
operations involving a group of lines, such as deleting,
extracting, copying, listing, or performing character re-
placement are done starting with the line containing the
cursor thru or until (inclusive or exclusive) a line number, a
character shing, the start of the file, the end of the file or the
entire file. With directed-syntax softkeys the availability of
these symmetrical options is always obvious to the user.

The memory space available to the editor can be viewed
as two double-ended queues (Fig. 6). These two queues
share the same memory space, so when one contracts the
other can expand into available memory. Another way to
view this memory is as a single circular buffer with a dis-
play window. When an edit session is started two scratch
files are created. Since more than one 64100A Development
Station may be using copies of the editor at the same time,
the names of these files are made unique by appending the
bus address of the station. These files serve as temporary
storage for text that will not fit in memory.

When the original source file is opened, enough lines to
fill the display are read and placed on the CRT screen. More
of the source file is read into queue A. The amount of text
read is limited to produce a reasonable response time. Many
edit sessions do not extend over the entire source program,
and a long initial delay can be annoying. Only for very short
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Editor File Structure

Fig. 6, Ihe 64000 edito/s memory space can be viewed as
two double-ended queues that occupy the same memory
space, so that when one expands the other contracts. Scratch
files are created when an edlt session ls started,



64500 PROM Programmer

A universal development system like the 64000 must be able to
program a  w ide  var ie ty  o f  PROMs (programmable  read-on ly
memories) to store object code for prototypes and limited production
runs. The semiconductor industry currently has many memory types
available: bipolar ROMs, ultraviolet- l ight-erasable MOS ROMs, and
combination chips containing both a MOS ROM and a microproces-
sor. Many speed ranges and memory sizes are offered to suit differ-
ent users' requirements. The goal of the 64500 PROM Programmer
design was to create a programming system that would accommo-
date the widest variety of popular PROMs, be easy to use in the 64000
system, and be low in cost. Low cost means both initial cost and the
incremental cost of adding faci l i t ies to program other types of
PROMS.

A study was init iated to catalog al l  currently avai lable PROMs. Size,
pinouts, power supply requirements, speed, and programming

specif icat ions were compared to assess the dif f iculty of bui lding a
truly universal system. From this point, a design strategy emerged.
The resulting system consists of a control card occupying one slot in
the 641004 mainframe and a socket module that resides in the
64100A panel insert,  The control card contains adjustable power

supplies and general input/output driver circuits, as well  as a 64000
mainframe interface. The individual socket modules match PROM
pinouts and tai lor the control card's general signals to meet specif ic
PROM programming spec i f i ca t ions .  Cur ren t ly ,  e igh t  socket
modules are avai lable,

To further simpli fy the hardware requirements of the control ler and
the socket module, al l  sequence t iming and pulse width control are
done by software in the PROM driver. Only pulse ampli tudes and r ise
and fal l  t imes are set by hardware circuits on the socket module.
Software control makes programming the memory chips easier. Each
socket module has an identification code that is read by the driver.
From this code, the appropriate programming routines and tables for
the PROM family are automatical ly selected. l f  a single-socket mod-
ule can program more than one PROM type, the avai lable choices
displayed on softkeys for user selection.

-Roger Cox

files is the entire file read before the user is allowed to issue
commands.

As various commands cause more of the source file to be
read the data is brought into memory and shuffled between
the two double-ended queues. When the internal memory
space is filled records are written to scratch file B in the
forward direction. Should a command require moving to an
earlier line of text the records are written to scratch file A
and read from scratch file B. The original source file is never
overwritten.

When the end command is issued a destination file is
created. The text is written from scratch file B, the internal
buffer space, scratch file A, and the source file into this
destination file. The original source file is then purged and
the destination file renamed as source. The original file has
then been placed in a deleted file list by the 64000 file
manager and can be recovered. When the scratch files are
closed they are deleted from the disc directory by the file
manager.

A particular problem in the microprocessor world is the
use of different assemblers and cross assemblers for the
same microprocessor, sometimes from the same manufac-
turer. The text editor is a tool that usually bridges this gap,

and in a few cases, dedicated conversion programs are
available. To try to accommodate source programs written
for a variety of assemblers, the 64000 editor extends the
normal shing replacement capabilities shown in Fig. 7. By
allowing for the recognition of unknown characters or vari-
able length strings of characters terminated by known
characters, more generalized editing commands can be is-
sued. The notation used is somewhat like the pattern recog-
nition languge SNOBOL.2 The example in Fig. B shows a
statement that reverses the order of the operands in two-
operand 8080 instructions. This string replacement capa-
bility is further augmented by the ability to specify the
columns over which the replacement should apply. The
columns are specified in the same manner as the tabset, that
is, either by specifying the column numbers or editing a line
reflecting the current range specification.

File Management
The heart of all modern software development tools is the

file management system. While automatic space allocation
is a part of almost all systems, in the 64000 system this
facility is significantly extended to include the ability to
recover accidently purged files or previous copies of edited

Fig.7. using simple character string replacement. (a) The
command executes f rom the current position (indicated by the
line number in inverse video) to the position specified rn the
command. (b) The status /lne reports the replacement per-

formed.
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Fig. 8. Powerful text modification using SNOBOL-like fea-
tures. (a) By using the special characters "anystring" ( @ )
and "anycharactef' ( E ) the operand field of this B0B0
code can be reversed. (b) The text changes virtually instan-
taneously and the status line reports seven replacements werc
performed.

files up to the time when the space is needed for new files. A
further enhancement aimed at managing the increased
number of files being used is the user identification added
to files names. By entering a user ID at the beginning of a
session all operations will be carried out on files under that
name. The directory list defaults to listing only the files
under that ID.

Further enhancements offered by the 64000 file manager
come in the directory, including a listing of space available
and comprehensive data on file use. Monitoring revisions
to programs is made easy since the date and time of last
access and modification of each file are automatically main-
tained and shown in the directory list. The linking loader
also specifies in the load map the date and time of the last
update of each relocatable module loaded. The significance
of this record keeping in a multiple-design project where
program modules are independently maintained cannot be
overstated.

Another important function for the file system is the
ability to submit a stream of system commands contained in
a file. This capability, available on many systems, makes
performing a long series of tasks almost foolproof. An ex-
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tension to this function in the 64000 allows parameters to be
passed to one of these command files in a manner similar to
assembly language macros. Then more generalized com-
mand files can be created, thus reducing the number of files
created and used. For example, a command file could be
created that automatically sequences through the opera-
tions of assembly, Iinking, loading, and emulating, and
only the source file(s) need be specified at the time the
command file is invoked. AIso, by including a learn mode
for building command files the full aid of the directed-
syntax softkeys is made available in constructing command
files.

Page Structure
The 64000 file management system has a linked list struc-

ture. Each of the files consists of blocks of sectors called
pages. The number of sectors per page is constant for a
given disc but may vary for different discs to optimize
certain file management operations. The pages of a file are
linked inboth forward and backward directions (see Fig. 9).
This symmetry is used to its greatest advantage in the 64000
editor. Editor operations such as rolling, paging, and string
searching can be done with equal efficiency either forward
or backward through the text.

When a file is being updated the same sectors on the disc
are used. If the size of the file is increased the file manager
allocates another page to the file, linking it to the end ofthe
last page. The list of available pages is kept in much the
same way as a file. It is a doubly linked list of pages. Free
pages are taken from the front of the list when they are
allocated to files. This approach allows files to grow easily
without bound and precludes the need for a user-invoked
disc packing program. The disc remains continuously
packed by the nature of the file structure.

Directory Format
As with most file management systems the keys to locat-

ing a file on the disc are kept in a separate area called the
directory. The 64000 directory is organized as a hash coded
list. Hash coding minimizes the amount of searching re-
quired to locate the directory entry for a given file. The
hashed value of the file name indicates the directory sector
on which the file information is most likelv to reside. The

Free
List

Information
Oeleted

Fite
List

Fag.9. 64000 file structure. The linked list organization atlows
for flexible file size.



64000 Command Parsing

Commands are interpreted in the 64000 System using an LALR
(look-ahead, left{o-right) parsing technique. The syntax of the com-
mands of an application module such as the monitor, editor, or PROM
programmer is described in a concise and readable format by a
grammar. An example of this is the editor's delete command shown in
Fig. 1. The complete grammar is given as input to a parser generator
program, and the result is a table that is used by the 64000 parser to
parse the text that the user types on the command line.

a) delete

b) <DELETE COMMAND> ::= <delete><RANGE-SPEC>

<RANGE-SPEC>

<LriilT>

::= <EMPTY>
<thru><LlMlT>
<until><LlMlT>

all

::= <STRING>
<NUiIBER>

end
start

::= delete
::= thru
::= untll

<delete>
<thru>
<until>

Fig. 1. Syntax of the editofs detete command. (a) Concise
syntax. (b) BNF-like grammar used to drive semantic and
softkey routines.

LALR parsing provides a convenient structure for 64000 applica-
tion programs. When a command is parsed it is decomposed in
exactly the same manner as the grammar used to create the parsing
tables. Each line of the grammar is an opportunity to perform a
semantic function. Thus the 64000 parser acts as a driver for the
various functions a program performs.

The same features of LALR parsing that drive the executing func-
tions of 64000 programs are used to drive the softkeys. As a com-
mand is typed into the command line the characters are continuously
scanned by the 64000 parser. As the various statements of the
grammar are applied to the character string the corresponding level
ol softkeys is selected. This parse continues up to the present posi-
tion of the cursor in the command line. At the end of the parse the
softkeys corresponding to the cursor position are displayed. ln this
way the user is shown all of the available choices at that time.

Since the command l ine is scanned almost continuously the
softkeys are always consistent with the cursor position. Because of
this the cursor can be moved to any position in the line and the
softkeys will track the syntax. Also, the correct softkey level is depen-
dent only on the characters contained in the command and not on a
sequence of user actions. For users who choose to type instead ot
using the softkeys and for commands that are recalled into the
command line the softkey tracking still works.

LALR parsing is deterministic in the detection of syntax errors.
When a string of characters does not correspond to a permissible
seouence as defined bv the orammar it is detected as an error. At that

f '-l {:!tr=f

STATUS: EditiNg FILEX
merge _
<FILE> trom thru

STATUS: Editlng FILEX

merge FILEZ trom 2$ thru 45_

ERROR: Invalid line number

merge FILEZ trom 2$ thru 45_
thru

Fig.2. When a syntax error is detected an instructive mes-
sage is displayed andthe cursor is placed under the error. The
so/tkeys are consistent with the cursor position.

time the position of the error in the command and the set of correct
syntax elements are known. The 64000 convention is to place the
cursor at the position of the error and report the error in a manner that
specifies what was expected. The softkey parsing is reinitiated as
well, so that the softkeys are again labeled with the available choices
for the current cursor position (see Fig. 2).

Flexibility is a bonus of the LALR parsing technique. When a
change or addition to the syntax of a program is desired, it can be
made quickly with a minimum oi impact on other features. Tables for
the new grammar are generated and, if required, a softkey level
template is added or changed. A new message may be added to the
table of error messages. The general structure of the softkey parsing
is shown in Fig. 3.

-Brian Kerr

Fig,3. Softkey operation. lnteractions between the main pro-
gram and the softkeys are well-defined and suitable for many
applications.
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data on that sector will indicate if the file exists or if another
directory sector should be searched. As long as the direc-
tory is only partially full the file should either be found or
proved nonexistent with only one disc read. Directory size
has been chosen to correspond to the size of the disc. This
guarantees that the directory will not be too full for efficient
file lookup.

Each directory entry gives the name, user identification,
and type of the file. Each entry contains pointers to the first
and last pages of the file. This is the necessary information
for accessing and deleting the file. In addition, two dates
and times are keptforeach file. One is the date and time that
the file was last accessed. This is modified with the system
date and time whenever the file is opened. The other is the
date and time that the file was last modified. It is updated
when the file is closed after records have been added or
rewritten. These dates provide the user with convenient
records of file use. The directory list and cassette backup
commands use the dates as qualifiers for operations. For
example, the user can store all recently changed files with
the command store all---files modified after S/31/80.

Recovering Deleted Files
The linked list file structure allows for a special feature of

the 64000 file management system. Since deleted files are
added to the end of the free list they are still intact until the
entire free list has been allocated to other files. When a file is
deleted its directory information is transferred to a special
section of the directory. This is a circular list of files that
have been deleted. A user who has made a mistake and
deleted the wrong file can issue a recover command. This
routine searches the recoverable file list for the file and if
the file is found checks to insure that its pages have not been
allocated to another file. If they have not, the file is restored
to the directory of active files. Since the 64000 editor always
purges the original file and creates a new copy, the user can
recover previous versions.

File Format
All user-accessible files have a similar data format. The

data is stored in variable-length records. The number of
words of data in a record is placed in the bytes immediately
preceding and following the data. Again, this symmetry
allows for bidirectional access. It also provides a means for
insuring the integrity of the file data. If the two lengths of a
record are not the same then a data read or write error can be
assumed.

Program modules such as the editor, assembler, and
linker are called by the 64000 monitor using a system of
overlays. When a module has been selected by the user or
the currently running module an operating system routine
is called to bring the correct file from the disc. Files ofthis
sort are kept in a special non-record format. They are stored
as memory images that can be read directly into the location
in memory where they will be executed. It is desirable that
this operation be performed as quickly as possible so as to
be transparent to the user. To accomplish this the disc is
organized in a special way. Normally sectors that are logi-
cally adjacent in a file management system are also physi-
cally adjacent on the disc. In the 64000 this is not the case.
Logically adjacent sectors are spaced some distance apa_rt
depending on the particular type of disc. When a sector is
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read the disc continues to rotate while the data is being
transmitted over the system bus and placed in the 64000
memory. By the time the next sector is requested the disc
has rotated so that the physical sector is in the correct
position to be read. In this way many disc rotations are
eliminated.
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Emulators for Microprocessor System
Development
by James B. Donnelly, Gordon A. Greenley, and Milo E. Muterspaugh

IM 'U 'LATE vt : to pretend, feign. EM 'U 'LATE vt :
to equal. Until recently, the development and de-
bugging of software for new processor-based sys-

tems was frequently done with the aid of simulators, which
are programs running on a large host computer and having
the property of simulating the instruction set and the pro-
gramming model of the new or ta-rget processor. After the
software was initially debugged using the simulator, fur-
ther debugging of the software-hardware system was done
with the aid of debug programs and various hatdware and
software facilities that provided breakpoints, single-step-
ping, and other capabilities. More recently, logic analyzers
have also aided in the process.

With the introduction of microprocessor development
systems, a new tool has been made available to the designer
in the form of the microprocessor emulator. Today's
emulators combine many powerful software and hardwar'e
development tools into one convenient, easy-to-use system
and great ly  fac i l i ta te the process of  in tegrat ing the
hardware and software components of newly developed

microprocessor-based systems. At the user interface, the
hardware portion of the emulator replaces the microproces-
sor, and in keeping with the definition of emulation, at-
tempts to be as much like the actual microprocessor as
possible, both functionally and electrically.

The advantages of using an emulator include the ability
to develop software on the actual processor to be used, the
ability to load the newly developed programs into emula-
tion memory and execute those programs in the develop-
ment hardware in real time without having to use PROMs,
thus speeding the development cycle, and the ability to
debug hardware and software under very controlled condi-
tions by.being able to run, halt, and step the processor at
will and to examine and modify registers and memory. An
additional advantage is the ease with which the emulator is
connected to the user system: it simply plugs into the socket
where the microprocessor would normally go.

Design Objectives
In developing the emulators for the 64000 Logic De-
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User System Emulation System

velopment System, the principal objective was to maximize
transparency to the user and the user's system. This objec-
tive was applied to both the functional and the electrical
aspects of the emulator.

Functionally, transparency was defined to mean that the
user must not be deprived of or restricted in the use of any
address space, instructions, interrupt systems, or other fea-
tures normally available in the microprocessor being emu-
lated.

Electrically, transparency means that the design of the
emulator must minimize degradation in timing and electri-
cal loading, so that the emulator will operate in the user's
system as much like the emulated processor as possible.

System Description
In the 64000 System, a complete emulation system con-

sists of the microprocessor emulator, the memory emulator,
a logic analyzer, and a software support package that inte-
grates the hardware components into a powerful, easy-to-
use development tool (see Fig. 1).

The emulator system is partitioned into three interfaces:
1) the user interface, which is defined by the specifications
of the processor being emulated, 2) the emulation bus, a
high-speed bus that connects the processor emulator, the
memory emulator, and the logic analyzer, and 3) the
641004 mainframe bus, which provides for control and
communication between the mainframe host processor and
the emulation system.

This architecture provides complete separation of the
host processor and memory from the emulation system.
This allows the host processor to run the emulation support
software independently of the emulator, thus relieving the
emulation processor of the burden of that overhead and
helping to meet the design goal of functional transparency.

The Microprocessor Emulator
The microprocessor component of the emulation system

is divided into two subassemblies, a pod external to the
64100A mainframe and a control board contained in the
641004 card cage (see Fig. 2).
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Flg. 1. The 64000 emulator sub-
system consists of a microproces-
sor emulator, a memory emulator,
a logic analyzer, and a software
support package.

The emulator pod contains a high-speed version of the
emulated microprocessor, interface buffers, buffer con-
trol circuitry, and an internal clock source. A fully buf-
fered architecture is used. Some of the advantages of this
configuration are the minimization of potential damage
from the user's breadboard and the ability of the 64000
system to gain control of the emulation processor and con-
tinue to function even though an electrical fault may exist
in the user system. The combination of less than maximum
capacitive loading on the processor provided by the isola-
tion of the buffers and the use of high-speed versions of the
processors gives the emulator the ability to operate with
little or no degradation of timing specifications in most
cases. The pod is connected to the user's microprocessor
socket by a 30-cm dual flat cable and a 40-pin plug. Each
signal wire in the cable is isolated from adjacent signals by
alternating ground wires with the signal wires to minimize
coupling. The pod connects to the emulator control board
by two 1.5-m twisted-pair flat cables. This cable is driven by
Schottky TTL buffers and is terminated in its characteristic
impedance with one wire of each pair grounded to insure
good high-speed signal quality.

The emulator control board consists of a timing section,
which converts the timing signals of a given microproces-
sor into the standardized timing requirements of the 64000
emulation bus, various status and control registers, a 256-
byte memory referred to as the background memory,
background memory access control circuitry, a state
machine called the background controller, and an illegal
opcode detector. The function of the control board is to
provide timing signals for the emulation memory and logic
analyzer units and to provide the status and conhol inter-
face between the emulation processor and the 64000 host
processor.

The Universal Approach
Early in the emulator design phase, it appeared that it

might be possible to identify certain functions of the control
board that could be considered independent of micro-
processor type and that these functions could be designed



Mlcroprocessor Emulatol
control Board

into a universal architecture, which could then become the
core of several emulators. The result of this effort became
known as the breeder board. It consists of a printed ciruit
board containing the interface buffers, status and conhol
regis ters,  background memory and access contro l ,
background conholler, and illegal opcode detector, plus an
undefined wirerwap section to be used by the designer in
breadboarding the timing section, which is the principal
difference between the various microprocessors. To date,
the breeder board has been the basis for three control boards
that serve a total offive distinct microprocessors depending
on the pod selected.

For HP, this approach has had the obvious advantage of
more efficient use of engineering resources and shortened
design cycles. The customer has also benefited by virtue of
the fact that a common architecture results in a degree of
consistency and continuity in the operating characteristics
of the various emulators, thus reducing learning time. In
addition, this approach has made it possible for some con-
trol boards to serve more than one microprocessor by just
changing the pod.

Functional Description
In operation, the emulator exists in one of two states,

foreground or background. In the foreground state, the
emulator appears to the user system as a standard micro-
processor and executes user-written code, which may be
physically resident in either user memory or emulation
memory or a mixture of both, depending on how the user's
memory space has been mapped. It is worthwhile to note
that even though physical memory such as ROM may exist
at a given address space in a user's system, it is possible to
overlay that memory with 64000 emulation memory for
code patching and debugging purposes.

In the background state, execution in the user system is
suspended and the processor appears halted to the user

Address Data

Flg.2. The 64000 emulator and
flosl processor have separate
buses so the host processor can
run the emulation software inde-
pendently of the emulator, thus
helping to makethe emulator func-
tionally transparent to the user and
fhe user's system.

system. The apparent halted state at the user interface is
synthesized by manipulation of the pod buffers while the
processor is actually running under 64000 system control
in background memory. While in background, all inputs
from the user system are inhibited to prevent possible user
system interference with the execution of emulator
background tasks.

Two important features of the 64000 emulators are key to
the achievement of the functional transparency design ob-
jective. The first is the concept of background memory and
the second is the means by which conhol is transferred
between the user system and the 64000 system, that is,
between foreground and background.

Background memory is a 256-byte RAM resident on the
emulator control board. This memory is physically distinct
from any memory either in the user system or on the emula-
tion memory board (see "Emulation Memory" below), and
does not occupy any of the user's address space. The
background memory is accessible to both the emulation
processor and the 64000 host processor and serves as the
primary communication link between the two. The 64000
host processor loads various register unloading and register
and memory read/modify routines into background mem-
ory and these routines are then executed by the emulation
processor when it is transferred from foreground to
background.

Transfer of the emulation processor from foreground to
background is initiated by the occurrence of a break condi-
tion. A break may originate in any one of fdur sources. It
may come from the logic analyzer unit after a specified
condition has been met, from the emulation memory unit
because of an illegal memory reference or write to ROM,
from the processor emulator control board as a result of an
illegal opcode fetch, or from the host processor, for example
when the user enters a kevboard command for the emulator
to stop.
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A prime consideration in choosing the means for trans-
ferring control of the processor was the need to have some
method that is independent of processor type, since the
universal architecture of the control board was intended to
work with a variety of processors. For example, a nonmask-
able interrupt (NMD might be a reasonable way to seize
conhol of a processor, but some, such as the 8080, have no
NMI. This need led to the use of a technique of jamming
addresses independent of the addresses being generated by
the processor onto the emulation background memory ad-
dress bus at the appropriate time in the processor instruc-
tion cycle. This causes the opcode fetch to be returned to the
processor from background memory.

The jamming process is synchronized by the background
controller to the first opcode fetch cycle following the oc-
curence of a break condition. This process simultaneously
inhibits the user interface buffers and the address buffers
from the processor to the background memory while en-
abling the jam address counter onto the bus. The lam ad-
dress counter generates consecutive addresses starting at
00H for the length of one full instruction cycle. The length
of the jam count is elastic, since state transitions of the
controller occur on opcode fetch cycles and so the count
length is a function of the instruction loaded into address
00H. Typically, a call instruction is used in the background
code as the first inshuction. The use of this type of instruc-
tion serves two purposes. First, the processor responds by
placing the program counter on the stack. The stack is
always in the same two locations in background memory
regardless of where the processor stack pointer is set be-
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Fig, 3. Ihe emulator exists in one
of two states, foreground or
background. The background
control ler, a four-state state
machine, controls the transfer of
the emulator processor from
foreground to background and
vice versa. This chart shows de-
tails of the background entrylexit
process.

cause the address bus is being jammed by the jam counter.
This information is later used to determine where to send
the processor when the emulator is returned to the fore-
ground state. Second, the program counter is changed to the
starting address of the background program, which results
in transferring program control to the background memory
when the jam cycle is terminated on the next opcode fetch.
Functionally, this process may be viewed as a hardware
implementation of a nonmaskable interrupt that is inde-
pendent of processor type (Fig. 3).

The background controller is a state machine having four
states: jam background, idle background, exit background,
and foreground (see Fig.  ). State transitions occur at the
beginning of opcode fetch cycles that are coincident with
other qualifying events.

The background controller enters the idle background
state on the next fetch following the beginning of the jam
cycle previously described. This returns control of the ad-
dress bus to the emulator processor which begins executing
the background entry program. During this time, registers
are unloaded, return addresses are computed, and so on.
Following the completion of these tasks, the processor en-
ters a jump self loop called tRap where it awaits further
direction from the host processor.

The host processor communicates with and controls the
emulator processor indirectly through the medium of the
backgrotind memory. This is possible because the memory
is designed so that the host processor can read or modify
background memory at the same time the emulator proces-
sor is executing code in that memory. The method of control
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5OF8 FA
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1CFA Fetch Opcode
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t l++

Foreground

Iv--T--
Jam Background

v
f
I
I
I
I

ldle Background

v
+

Exit Background

V

+
Foreground

+



Flg. 4, Background controller transition diagram.

involves the host processor loading a program or programs
into background memory and then changing the jump ad-
dress of TRAP on the fly to coincide with the starting ad-
dress of the desired background program. The emulator
processor reads the new jump address and transfers to that
point.

The exit background state is initiated when the host pro-
cessor causes the emulator processor to make an opcode
fetch from a dedicated background address called ExIT. The
background controller recognizes the fetch from EXIT and
makes the state transition. The opcode loaded into location
EXIT is a jump instruction and the following bytes contain
the address of the desired foreground enty point.

The hansition from the exit background state to fore-
ground immediately follows on the next opcode fetch cycle.
At this point, the program counter of the emulator processor
has been transferred to the foreground entry address by
virtue of the previous jump instruction. The background
controller hardware simultaneously enables the user inter-
face buffers and switches the program source from
background memory to foreground memory, which may be
either user memory or emulation memory as determined by
the memory mapper.

The process of entering and exiting background described
here is employed in all cases where it is necessary for the
host system to control the emulator processor. An example
of this is single-stepping, where the emulator is returned to
foreground for a single instruction cycle and then immedi-
ately jammed into background. Continuous stepping and
non-real-time analysis are done in a similar manner.

Emulation Memory
The emulation memory consists of the memory emulator

control board and from one to four emulation memory
boards. Each fully loaded memory board contains 32K bytes

of static memory.
The memory conholler interfaces the emulation memory

to the mainframe and the emulator system. The emulator
has the full bandwidth of the emulation memory. If the
mainframe wants to access the emulation memory, the
mainframe cycles are held off until the emulator completes
its memory cycle. A mainframe cycle is then attempted and
a flag is set if there was sufficient time to complete the
mainframe memory read. (Only mainframe read cycles are
allowed while the emulator is accessing the emulation
memory, since write cycles may not be interrupted.) This
feature lets the user dynamically watch the memory while
the emulation processor is running, provided that sufficient
dead time is available.

The memory controller provides mapping of the target
processor's address space into 64 blocks ofequal size. This
is accomplished by placing a mapper RAM in series with
the six highest-order address lines from the emulator. Each
block can contain from 256 bytes to 32,768 bytes depending
on the address bus size and whether the data bus is B or 16
bits wide for the processor being emulated, The mapping
feature allows the available memory (as little as 8K bytes) to
be placed anywhere in the emulated processor's address
space. For an 8-bit processor, such as the 8080, each availa-
ble block of memory can be placed anywhere from 0 to 64K
in 1K increments. The mapper also provides status bits for
each block of memory. The status bits tell the emulator
whether that block of memory is RAM, ROM or undefined.

The memory controller sends a break to the emulator if an
illegal memory operation is performed, such as a write to
ROM.

Emulator Software
The purpose of the emulator software is to provide a

friendly interface for the user to verify program code in a
hardware configuration that emulates the end product, a
microprocessor-based system, Hardware resources used by
the 64000 System emulator software include the processor
emulator, the memory emulator (up to 64K bytes), and the
logic analyzer unit, which provides 256 states of address,
data, status, and count data.

The first task for the user is configuration assignment,
that is, specifying the configuration of the hardware (see
Fig. 5). This includes
1. Processor clock (internal or external)
2. Illegal opcode detection (enable or disable)
3. Real-time run control (enable or disable)
4. Memory assignment for 64 equal address ranges. Each

range can be assigned as emulation memory, user mem-
ory, or illegal, and as RAM or ROM.

5. Simulated I/O control addresses for display, printer,
keyboard, RS-232-C interface, and disc file(s).

Once the hardware configuration has been set up, the in-
formation can be stored in a user-specified file so that re-
peated emulate sessions can be initialized without repeat-
ing the configuration assignment task.

The next user task is loading program code. This is ac-
complished by specifying the file name of the user program
code file. The configuration and/or load-memory file names
may be specified when the emulate command is initiated.
For example, the following command may be given:
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Fig. 5. fo use the emulator, the user must first specify the
hardware and memory configuration.

emulate CONFIG load memory PROGNAME

This command brings in the emulate software, initializes
the hardware resources (processor, memory, etc.) as previ-
ously stored in CONFIG, and then loads memory with code
from PROGNAME.

After the emulator has been configured and program code
loaded. the user can start an emulate session. There are a
variety of ways for the user to debug program flow. These
include:
1. Execution control, such as run, step, stop, trace com-

mands
2. Display options, such as registers, memory, trace
3. Modify options, such as registers or memory
4. Simulated UO control.

Execution Control
Upon entry to the emulate module, the status of the pro-

cessor emulator is "ready" and the module is waiting for the
next command. Commands that may be used include run,
step and stop. These commands have the following syntax:

run ffrom address] [until term] run processor at current
program counter or speci-
fied address. A stop term
may be specified.

step Inumber instructions]

stop processor

step processor one instruc-
tion or specified number
of instructions
stop processor

Fig, 6. A typical trace display showing program flow in
mnemonic form.

provided for user convenience. This means that any expres-
sion may contain symbolic references. For example, the
following trace specification may be given:

trace after SYMBOL

The user may also make the following type of trace

specification:

trace after register c : 3

This causes the system to single-cycle the emulator proces-

sor and perform the specified trace. The emulator software
tries to do the specified task in real time, but if the user
makes a  spec i f i ca t ion  beyond the  rea l - t ime ana lys is
capabilities of the system, then the emulator processor is
cycled to perform the specification. The trace command can
be a complex specification. For example consider the fol-
Iowing trace commands:

trace in sequence 0A0CH then o63EH
trigger after 00A7H

This specification can be accomplished in a pseudo-run

The processor may be stopped by an illegal opcode (if

enabled), an illegal memory reference, completion of the
analysis, or a user command.

Real-Time Trace Command
The trace command allows the user to view program

flow. The command is simply:

uace

The resultant trace display shows program flow in
menomic form and may look as shown in Fig. 6.

When the program code is loaded, the symbol file is also
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Fig. 8. A display of the emulator processor reglsters.

mode, that is, the processor can run in real time to 0A0CH
and stop, then run in real time to 063EH, and so on. The
displayed trace might be as shown in Fig. Z.

Display Options
The display options include registers, memory, and hace.

An example of a display of the processor legisters is as
shown in Fig. B.

Memory displays can be of any assigned memory. Modes
of  d isp lay inc lude absolute,  mnemonic,  of fset ,  and
dynamic. The absolute mode displays memory in hexadec-
imal and ASCII, as shown in Fig. 9. The mnemonic mode
displays memory as opcodes, mnemonically, as shown in
Fig.  10.

In the offset mode, displayed addresses are offset by a
specified value. The dynamic mode displays memory using
a sampled mode (not real time).

Trace displays show the results of analysis data. Modes of
display include:
1. Mnemonic, to display opcodes mnemonically
2. Absolute, to display all data in hexadecimal
3. Packed, to group data by opcode
4. Unpacked, to display all data without grouping
5. Address offset, to display addresses offset by a specified

Fig, 9. An absolute-mode memory display, showing memory
in hexadecimal and ASCIl.

Fig. 10. A mnemonic-mode memory display, showing mem-
ory as opcodes.

value. This feature allows the user to view program code
with addresses as they €ue on the assembler listing.

Modify Options
The modify commands include:

1. modify register, to modify any specified register
2, modify memory, to modify any specified memory to a

specified value.

Simulated l/O
Simulated I/O control allows the user to use 64000 inpuU

output facilities until the real VO system can be interfaced to
the processor. Since this is done in a sampled mode, not in
real time, it is called simulated UO. The general procedure is
to give the control address for the I/O device desired, fol-
lowed by a status byte specifying the type of request. Any
additional parameters are placed after the control address.

The standard I/O devices are display, printer, RS-232-C
interface, keyboard, and disc files. Display requests are
open, close, roll l ines 1-18 up and write to l ine 18, set row
(1-18) and column (1-80), and write to row/column. printer
requests are open, close, and write line. RS-z32-C requests
are set conhols/modes, read status, read/write single byte,
and read/write buffer data. Keyboard requests are open,
close, set mode, read line, and read special keystrokes. Disc
file requests are create (up to 6 files), open, close, position to
record, read/write record, and change file name.

Conclusion
The 64000 emulation system, with wholly separate host

and emulation processor architecture, buffered pod for iso-
lation and protection from the user system, the background
memory concept, and a novel method of host and emulation
system interaction, provides a new level of transparency to
the user system and offers unrestricted use of the full ad-
dress space, interrupt systems, and all other functions of the
microprocessor being emulated. This, coupled with flexi-
ble memory mapping, real-time analysis unit and an inte-
grated software support package, provides a powerful emu-
lation tool in a new microprocessor development system.
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Pascal/64000
A compiler is a program that translates a high-level com-

puter programming language into low-level machine lan-

guage instructions. Effectively, the compiler simulates a

high-level language machine.
The Pascal/64000 compiler is designed to translate pro-

grams vr,'ritten in Pascal into code for microprocessors. It is

implemented as a subset of the language definition given by

fensen and Wirth,l but several options and extensions have

been added to the language to make it more appropriate for

microprocessor programming.
Ex tens ions  inc lude type-chang ing  capab i l i t ies ,  an

OTHERWISE clause for the CASE statement, the BYTE stan-

dard type (for microprocessors with byte addressing

capabilities), some standard procedures such as SHIFT and

SHIFTC for manipulating data and aonR for getting at the

address of a variable, separate compilation of modules fin
standard Pascal the whole program has to be compiled in a

The Pasc a1164000 Compiler
by lzagma l. Alonso-Velez and Jacques Gregori Bourque

ASCAL IS A STRUCTURED computer programming
language rich in control and data structures that
make programming natural, that is, the Pascal struc-

stures are close to the way one would express the same

concepts in English. The block structure of Pascal encour-

ages the programmer to write modular and well-structured

programs, and features such as type checking force the

programmer to understand the program Iogic in detail be-

fore and during program development. The fact that the

program is well structured and written in a way that is

natural to the programmer makes understanding of the

program easier, both at the time it is being developed (for

debugging purposes) and later when it needs to be changed

(for maintenance purposes). In summary, Pascal makes

program development easier and more enjoyable all the

way from the moment of conceptualization, through writ-

ing and debugging the program, to maintaining it at a later

t ime.
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single module), constant expressions, and HEx, OCTAL and
BINARY bases.

One of the options available in the compiler allows the
user to declare variables and procedures as GLOBAL or EX-
TERNAL for separate compilation. This also permits the use
of routines not written in Pascal. These routines can be
declared as EXTERNAL in the Pascal program and, as long as
the parameter passing is compatible with the Pascal calling
sequence, they can then be called and used from the Pascal
source program. The Pascal compiler subroutine calling
sequence is fully documented to allow the programmer to
use non-Pascal routines.

Other important options include the capabil ity of
separating data from program code (for example, data can
be allocated to RAM and program code to ROM) and the
accessing of absolute addresses (can be used to implement
memory mapped I/O).

The following is a list of compiler options and a short
description of each. It is important to note that the pro-
grammer who prefers standard Pascal can ignore all the
options and extensions and write portable standard Pascal
programs.

$ANSI ON$, gANSr OFF$
ON causes a warning message to be issued for any feature
of Pascal/64000 that is not part of standard Pascal. De-
fault: oFF.

$ASM__-FILE$
This option causes the compiler to create a source file
containing the equivalent assembler source information
of the program being compiled. This source file (named
ASMsoss) is acceptable to the assembler for the B0Bb
microprocessor. If the LIST-CODE option is ON the
ASM808s file also contains intermixed Pascal source lines
as assembler comments. Default: OFF.

$DEBUG ON$, $DEBUG OFF$
ON causes all arithmetic operations with bytes and inte-
gers to call external library routines, which insure that no
overflow, underflow, or divide-by-zero operations occur.
Default: oFF.

$EMIT-CODE ON$, $EMIT-CODE OFF$
ON specifies that executable code is to be emitted to the
relocatable code file. Default: ON.

$END_ORG$
Used after the ORG option to return the variable allocation
to the previous mode.

$EXTENSIONS ON$, EXTENSIONS OFF$
ON allows the programmer to use the microprocessor-
oriented extensions to the Pascal language. OFF disallows
the use of these language extensions. The extensions
include functional type changing, the address function,
the BYTE data type, buiit-in functions, SHIFTand SHIFTC,
and nondecimal constant representations. EXTENSIONS
ON turns RECURSIVE OFF and vice versa. Default: OFf.

$EXTVAR ON$, $EXTVAR OFF$
ON causes all variables defined until the subsequent

EXTVARoFF is encountered to be declared ExTERNAL. No
local storage is allocated in this module for such vari-
ables. Default: oFF.

$GLOBPROC ON$, $GLOBPROC OFF$
ON causes all main-block procedures defined until the
subsequent GLOBPROC OFF is encountered to be declared
GLOBAL so they may be accessed by other modules. De-
fault: oFF.

$GLOBVAR ON$, $GLOBVAR OFF$
ON causes all main-block variables defined until the sub-
sequent GLOBVAR OFF is encountered to be declared
GLOBAL so they may be accessed by other modules. De-
fault: opF.

$LrsT oN$, $LrsT oFF$
ON causes the source file to be copied to the list file. OFF
suppresses the listing except for lines that contain errors.
Default: oN.

$LIST-CODE ON$, $LIST-CODE OFF$
ON specifies that the program list file will contain the
symbolic form (assembly language) of the code produced
intermixed with the source lines. Default: oFF.

$OPTIMIZE ON$, $OPTMIZE OFF$
ON causes certain run time checks to be ignored, such as
prechecking the range values of a CASE statement. This
mode will typically produce somewhat smaller and faster
modules that are susceptible to bad fout of range) data at
run time. This option should only be used for well-
structured programs that have been thoroughly de-
bugged. Default: OpF.

$ORG numberg
All variables declared until END_ORG is encountered
will be allocated sequential absolute addresses starting
from the number specified.

$PAGE$
Causes a form feed to be output to the listing file. Default:
NULL.

$RECURSIVE ON$, $RECURSIVE OFF$
ON causes all procedures declared until the subsequent
RECURSIVE OFF is encountered to be compiled to allow
recursive or reentrant calling sequences. OFF causes pro-
cedures to be compiled in a static mode which does not
allow for recursive or reentrant calling sequences. De-
fault: ON.

$SEPARATE ON$, $SEPARATE OFF$
ON enables the separation of program, con'stants, and
data, such that program code and constants are put in the
PROG relocatable area and data is put in the DATA relocat-
able area. OFF puts all program code, constants, and data
into the PROG relocatable area. Default: Of'F.

$TITLE "string"g
The first 50 characters of the string are moved into the
header line printed at the top of each subsequent page.
Default: NULL.
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Program Debugging with Pascal/64000

by P. Alan McDonley

High-level languages allow a programmer to create algorithms
logical ly without concern for processor-dependent steps. During the
debug phase ol program development using the target machine
emulator, a programmer must trace the program in machine code, a
language different from the source code language, such as Pascal,
that was used to design the algorithm.

Pascal/64000 generates relocatable symbolic information during
the code generation pass (pass 2)to help the user debug programs.
In part icular, the user can request an expanded l ist ing (see Fig. 1).
This listing contains the assembly language source statements cor-
responding to the machine code placed in the relocatable file, inter-
mixed with the original Pascal source l ines. Al l  of the symbols and
labels used in the compiler-generated assembly language source
lines are available during emulation to ease the user's translation from
the original Pascal to the machine code seen when tracing execution.

In Fig. 1, the leftmost number is the source l ine number. Next is a
relocatable offset, and next a level number. Below each line are the

0 r 1 0 0  !  " E l S 5 '
i n  [ [  ]  P E i [ R A f r  l E  I ' E E ]

r l r l !ar i l A i l E  " l F I i l E E  P : 3 c a i "

relocatable offset, opcode and mnemonic equivalent of the code put

in the relocatable file.
The user interacts with the emulator using statements such as:

run from DISPLAY -qNSWER until LINE-17

or
display memory ANSWER

where orsprev-answEn is the name of a global procedure in the listing
above, unE-rz is a local symbol that the compiler generated for line
17 of the source, and ANSWEB is the name of a global variable. Using
this listing, the programmer can modify variables and execute seg-
ments of a procedure or program separately, so that each part may
be proved correct and the interactions more closely followed.

Global and external variables may be accessed by name during
emulation. Local variables are renamed by the compiler and may be
inspected and modif ied using the new name found in the expanded
listing. In the listing above oRtvER-o is the local name of DISPLAY-IN-
oEx. To use specific variables for debugging purposes, the user may

declare them to be oLoerL. This option causes the symbol name (up

to 15 characters) to be sent to the linker as a global symbol in the
relocatable file.

Traditionally, when errors are detected during execution, anter
mediate results are printed at run time and errors are narrowed to a
few lines of source code, which can then be proved incorrect by
hand execution. Much trme can be spent with this type of program
development.

Run time library routines may have features to aid the user in
debugging programs or may be designed for f inal product use,

where errors are not expected. A otvtstoN BY o error message would
mean little to the grocery store clerk attempting to weigh tomatoes.

The Pascal/64000 debug library provides the user with range

checking for arithmetic operations, protection against misuse of
dynamic memory space, and detection of some other types of non-
fatal errors, When an error occurs, program execution is suspended
to allow the input parameters and program flow at the error to be
examined. By listing local symbols in a file called Derrors, th€ value of
each register and the address of the cal l ing routine are displayed.
Fig. 2 shows a sample listing of the local symbols in Derrors When an
error is detected, the program counter address at which program

execution stops is displayed. Matching this address with the upper
addresses in the middle column of the oerrors listing reveals the type of
error that caused execution to stop. The lower entries in the rightmost

column of the listing show the values of the registers passed to the
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Fig.2. A typical listing of local symbols, program countel
addresses, and register contents at the point where an error is
detected. Knowing the address at which program execution
stops, the user can d eter m i n e the ty pe of e r r o r f ro m th i s I i sti n g.
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Fig.1, Expanded listing of relocatable code produced by the
Pascal164000 compiler contains assembly language state'
ments intermixed with the original Pascal source /lnes. Ihls
makes program debugging easier.
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routine that detected the error.
By viewing the stack, the current state of each recursion into

procedures and functions can also be determined. In al l ,  with the aid
of the 64000 emulators ar,d Pascal, the productivi ty of microproces-
sor software designers is raised substantial ly. Pascal/64000 has
been designed to support the user without knowing the user's config-
uration, providing the tools needed to code eff iciently for micro-
processors in a high-level language.
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$WARN OFF$, $WARN OFF$
ON specif ies that the warning messages wil l  be displayed
and written to the listing file. OFF specifies that only error
messages wil l  be displayed and l isted. Default:  ON.

$WIDTH number$
The number determines the number of significant charac-
ters in the source line. Additional characters are iqnored.
Default:  rzo.

In accordance with the 64000 design phi losophy, the
Pascal compiler is designed to be easy to use and have
capabil i t ies that, combined with emulation, provide power-
ful debugging tools. Any global procedure or variable can
be addressed by name from emulation, and program state-
ments can be accessed by their Pascal program source l ine
numbers.

The compiler is evoked by pressing the softkey labeled
compile. The softkeys then guide the user to the available
options. The f irst l ine of the source program is a special
compiler directive that indicates to the compiler which
microprocessor it is to compile for. The microprocessor
name appears embedded in quotes: "8085", "ZBO", and so
on. During compilat ion the status l ine of the 64100A dis-
plays the compiler status at each point.

lmplementation
Pascal/64000 is implemented in two passes (Fig. 1). The

first pass reads the Pascal source program and checks for
enors. If no errors are found the compiler generates data for
the second pass or code generator. This data consists ofan
intermediate language (IL), which contains the information
from the source program that the second pass needs to
generate code for the given microprocessor. The code
generator then reads the IL and from it produces the relocat-
able code to perform the operations described by the pro-
grammer in the original Pascal source program.

If errors are found during the first pass, the compiler
writes the errors to the display. At the end of compilation
the display also makes avai lable to the programmer a sum-
mary of the meaning of each error found in the program. If a
I ist f i le has been indicated. the compiler includes informa-

tion about errors in the list file as well. Errors are listed even
if the NOLIST option is on. In the event of errors the com-
piler does not generate relocatable code; the code generator
is not evoked and only the listing second pass is executed.

Intermediate Languages
Intermediate languages have been implemented as zero-

address,  one-address,  two-address,  and three-address
forms. Only the three-address form can explicitly describe
each ofthe source and result operands of a binary operation.
Each of the other methods has some implicitly specified
operands.

The zero-address form uses a data stack, where all source
and result operands are implicitly found. Loads and stores
are equivalent to stack push and pop operations. Binary
operations assume that both source operands are on the
stack before the instruction. They are popped after the oper-
ation and the result is pushed onto the stack. This form of IL
is generally well suited to top-down or recursive-descent
compilers, since it allows for the generation of an IL for a
particular language construct at the first possible moment
after semantic recognition. It is the IL used in the popular
P-code versions of the portable Pascal compiler.

The one-address form uses a single implicit register as
part of each IL instruction. All operations may operate on
this single register or on this register and memory.

The two-address form uses a fixed number of registers
and allows an IL instruction to operate explicitly on a pair of

Fig. 1. Pasca/164000 is a two-pass compiler. fhe flrst pass
reads the Pascal source program, checks for errors, and
produces an tntermediate language (lL). The second pass
generates code for a specified mrcroprocessor.
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registers or on a register and memory. A pair of operands
may be specified for each instruction and the result of an
operation goes into one of the specified operands (usually
one of the explicit registers).

By allowing each source and result operand to be
explicitly described, the three-address form permits the IL
description of a program to be more suitable for translation
to target processors with any type of stack or register ar-
chitecture. The other three forms with their implicit result
operands are more conveniently translated to target
machines with a stack architecture (zero-address IL),
single-register architecture (one-address IL), or multiple-
register architecture (two-address IL).

PascaU64000 Intermediate Language
The Pascal/64000 compiler generates relocatable object

code for microprocessors from an intermediate language
(IL) temporary file created by the compiler during pass 1.
This IL file is logically equivalent to the original source
program. The code generator module (pass 2) creates the
machine-specific object code relocatable file from this IL
file.

The Pascal/64000 compiler uses a three-address (or qua-
druples) IL. The four parts of a quadruple are the instruction
or operation, the leftmost source item, the rightmost source
item, and the result. For example, the Pascal expression:

A:  = B-C;

would cause generation of the intermediate language
quadruple:

SUB B,C,A Subtract C from B, store result in A.

For comparison, the equivalent code using a zero-address
IL (the P-code portable Pascal compilers use this form)
would generate the following IL instructions:

LOAD B
LOAD C
SUB

STORE A

Push value of B onto stack
Push value of C onto stacx
Subtract first stack item from second, pop

both, push result onto stack
Pop stack into A.

For a one-address IL the following instructions are
equivalent:

ferred from the compactness of quadruple IL representa-
tions. It is time-consuming for a code generator to analyze
multiple IL instructions to detect patterns for optimization.
Since the quadruple form of IL packs more information in a
single instruction, it simplif ies the effort to generate
reasonably efficient object code for a specific target micro-
processor.

Each operand of a Pascal/64000 intermediate language
quadruple has an explicit operand type, which specifies its
addressing mode as a memory location (absolute, relocata-
ble or external) or as an implied address (immediate con-
stant or temporary pseudo-address). The mapping of these
operand types to a specific microprocessor instruction set is
left to the code generator. Some processors with limited
memory accessing modes use a purely static (but relocata-
ble) form for all explicit memory references. For these pro-
cessors recursion is supported by additional run time
routines to permit safe recursive calling sequences. For
other processors with more sophisticated memory access-
ing modes (particularly if register and stack relative
addressing is available) data and parameters are allocated to
the stack in a more traditional dynamic local memory allo-
cation scheme.

Most optimizations implemented by the Pascal/64000
compiler are local optimizations performed by the pass 2
code generator specific to the target processor. However,
some optimization of expression evaluation is done during
pass 1. Expressions are built into trees as they are being
parsed. The IL generator traverses these trees before
generating the IL instructions and attempts to minimize the
number of temporary results needed to evaluate the expres-
sion. These expression trees are also used to discover con-
stant expressions, which are folded into a single constant
before any IL is generated. It is possible to perform some
global optimizations during pass 1, and this may allow for a
reduction in the size of the IL file.

Code Generation
The intermediate language representation of Pascal/

64000 contains all the information needed to create
processor-specific code equivalent to the source program.
The translation of the intermediate language to relocatable
code for a specific target microprocessor is guided by the
limitations of the target processor's instruction set.

All programs must eventually fit into a system that has
been implemented in a specific hardware configuration,
usually with some fixed memory size. Generally, if more
memory is required in a specific implementation, it will
cost more to design and produce that system. The speed of
program execution is generally less important, in the sense
that specific program modules that consume a large
percentage of program execution time can almost always be
reprogrammed to execute faster. With these observations
concerning the relative importance of memory use and
execution time, code generation patterns have been chosen
to minimize memory use rather than execution time where
obvious tradeoffs can be made.

Two areas where the memory minimization objective can
have a significant impact on the structural form of the code
generation patterns are the use of static versus dynamic
allocation of memory for parameters and local variables and

LOAD B
SUB C
STORE A

Load accumulator with B
Subtract C from accumulator
Store accumulator into A.

For a two-address IL the following instructions are equiva-
lent:

LOAD r,B Load register r with B
SUB r,C Subtract C from register
STORE r,A Store register into A.

For this example the number of IL instructions for each
form of IL is in the ratio of 4:3:3:1 for zero-address, one-
address, two-address and three-address forms, respec-
tively. Some important results for optimization can be in-
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The 64000 Linker

by James B. Stewart

The 64000 linker takes relocatable object files generated by the
assembler or Pascal compiler and combines them to produce an
executable absolute file. The linker resolves symbolic references
between relocatable files (linking). lt also assigns relocatable code to
an absolute location in the target processor's logical address space
and changes memory references to reler to the absolute memory
locations (relocation). The l inker was designed with three major
goals: to support a wide variety of microprocessors, to be easy to use,
and to provide the user with a complete set of features to facilitate
l inking relocatable modules for complex microprocessor systems.

The designer of a microprocessor system needs to control the
locations of code and data in memory. Before the widespread use of
l inkers, this was done by coding the entire system in one assembly
language program with f ixed absolute addresses. A small  change in
the code required that the entire system be reassembled. Besides
being t ime-consuming, this made i t  dif f icult  for mult iple designers to
work concurrently on the same software.

A relocating linker overcomes these problems. Each program
segment may be developed and assembled independently. The
designer specif ies to the assembler that the code is relocatable. At
l ink t ime, the relocatable code lrom mult iple f i les is concatenated into
one continuous piece of memory.

The 64000 assembler and linker provide the user with several
relocatable areas. The assembly language statements oRG, PRoc,
oerl, and corr.rN defrne the relocatability of code. onc defines code to
be absolute or nonrelocatable. pBoG and DATA are general-purpose
relocatlon counters that allow the user to partition code to be loaded
at different memory locations, for example all program in ROM and all
data in RAM. covN soecifies that the data be relocated to the same
starting address as the coMN from all other relocatable modules. This
is similar to unnamed coMrvoN in FORTAN. When the relocatable
modules are l inked, the user provides the start ing addresses for the
pRoc, DArA, and coran relocatable code. To provide greater flexibility,
the user may define several pRoc, oern, and coL4N areas. For example
the pRoG, onu, and coN,4N areas lor liles A and"B may start at memory
locations 1000H, 2000H, and 3000H respectively, and for files C and
D at locations 8000H, E000H, and 3000H.

A load map and a cross-reference table may be generated for each
l ink. The load map (Fig. 1) describes the f inal memory locations of al l
relocatable files. The linker also keeps track of memory use and
warns the user i f  any confl icts exist,  A "memory overlap" error mes-
sage is given for any memory that has been allocated more than
once.

A feature of the 64000 linker known as no-load allows the user to
design overlays into the system. Any subset of the relocatable files
may be declared to be no-loaded. This subset is linked and relocated
with the files that are not no-loaded. The only difference is that the
absolute file generated by the linker contains no code from the
no-loaded relocatable files. For example, suppose the user has 6000
bytes of code and data, but only 4000 bytes of physical memory. lt
may be possible to use overlays to partition the program into pieces
that will fit in 4000 bytes. This is done by creating two separate
absolute files. The first contains one set of relocatable routines plus
the shared routines and data, The second contains the remaining
relocatable routines, also linked to the shared routines and data. The
shared routines and data would be no-loaded in the case of the
second absolute f i le.

Al l  64000 emulators al low the user to debug programs using the
symbols from the source code. This is part icularly useful when deal-
ing with the relocated code, since the user doesn't have to know

Fig. 1. A load map may be generated each time the 64000
linker is used. The map shows lhe final memory locations of all
relocatable files.

where in memory the linker put the code. Any location in memory may
be referred to by its symbolic name or its absolute address. To
accomplish this, the assembler outputs the entire symbol table for
each source program. When the relocatable code is linked, its reloca-
tion addresses are saved so they may be used during emulation to
find the absolute values of symbols. The linker also generates a
symbol f i le of global symbols. This f i le has two uses. l t  is used by the
emulator, along with assembler symbol tables, to provide symbolic
debugging. l t  may also be used in subsequent l inks to preload the
linker's symbol table. This feature has uses in overlays and in reduc-
ing l inking and download t ime in large systems.

A table-driven architecture allows the linker to support a variety of
target processors. Information in each relocatable file defines the
intended target processor. Each supported processor corresponds
to a system disc file. This file is used by the linker to configure itself for
the particular processor.

The configuration files contain two basic types of information: gen-
eral information such as word width and addressing space, and
tables or seouences of instructions for the linker. The different instruc-
tion types and addressing modes allowed in the target processor
correspond to entry points in the linker table.

Within the assembler-generated relocatable files, each operand
address is tagged as either absolute (no relocatron), pnoo relocata-
ble, oern relocatable, cor\,4N relocatable, or Exrernal reference. Re-
locatable and external tags contain a reference to an entry point in the
processor-dependent linker table. Knowing the relocatability of the
operand, the l inker f irst computes i ts absolute address, independent
of the target processor. lt then follows the instructions in the linker
table to generate the actual operand. The table allows operations
such as shifts, masks and compares, which may be performed on
various operands such as the absolute address, the current program
counter, or constants. In the 6800 microprocessor, for example, the
direct addressing mode requires that an instruct ion's operand ad-
dress be in the range O<address<255. The l inker table for handling
the direct addressing mode performs the following operations:

@
@
@g
Ery
i i
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LOADWORD = ABSOLUTE-ADDRESS
TEMP : OFFH
lF LOADWORD > TEMP Tl-iEN "Address out ol range'
OUTPUT = LOBYIE (LOADWORD)
PROGRAI\4-COUNTEF : PROGRAN,4-COUNTER +'1
RETURN

The various rnstruct ion formats and addressing modes lor al l  sup-
ported microprocessors are implemented using similar sequences of
srmple instructions. The obvious advantages are the speed and ease
with which the linker can be conligured to support additional proces-

sors. Typical linker tables are generated with 20 to 50 lines of
processor-specific code,

James B. Stewart
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cal State University. Kip is married, has
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the use of run time library subroutines to perform many
relatively simple operations. The B0B5 microprocessor, for
example, is able to access memory directly as bytes or words
with immediate two-byte absolute (relocatable) addresses,
and it may access bytes of memory indirectly through regis-
ter pairs. Dynamic allocation of local data using stack rela-
tive addressing must be performed by in-line code or
through subroutine calls using the stack offset value as a
parameter. A static allocation scheme permits access to
local variables or parameters with an arbitrary offset from
some (relocatable) label with a direct access instruction
which requires only three bytes. This permits access to both
byte and word simple variables. Since Pascal programs
must access many variables, this reduction of code size by
40 to 50% for each variable access can save a significant
amount of memory in a large program. This static allocation
of local variables does add additional code and run time
overhead for the user requiring recursive calling sequences.
These additional memory and time considerations are a
reminder to use recursion only where absolutely necessary.

The 8085 instruction set does not support arithmetic for
t0-bit signed numbers. IF I, f, and K are type INTEGER, the
statement: 

K::I-I-K

generates the following B0B5 code, calling library routine
Zintsub to perform the subtraction operation:

LHLD TEST1 N
XCHG
LHLD TESTI__-D+2
CALL Zintsub
XCHG
LHLD TEST1 N+4
CALL Zintsub
SHLD TESTI___D+4

put I in register HL
move I to register DE
put J in HL
subtract I from I
put result in DE
get K
subtract K from (I-f)
store the result to K.

MOV L,A
POP PSW GET BACK ACCUMULATOR

AND FLAGS
DAD D X+[_Y] ADD DE AND HL
RET

Using in-line code it would take eight bytes of code to
perform the integer subtraction operation each time it is
needed. Using the library approach above, it takes eleven
bytes for the library routine and only three additional bytes
for the subroutine call each time a subtraction is required.
After only three integer subtractions the program is already
four bytes smaller. For ten subtractions in-line code genera-
tion would have added B0 bytes of code to the program,
while library calls add only 41 bytes.

This comparison of in-l ine code versus l ibrary sub-
routines for even simple operations accounts for a signifi-
cant memory savings when applied to the most commonly
used operations that cannot be accomplished in a few bytes
of instructions on the target machine.

When the linker creates an absolute file, it tries to find any
unsatisfied symbols or routines in a specified library file. It
only needs to append run time library routines that have
been specifically requested. The actual code size added to
an absolute file from the run time library is typically much
smaller then the 4K bytes required for loading the entire
library.

If a user feels the need for a run time library routine that
performs some special operations or is otherwise tailored to
the specific application, the user can write another version
of any run time library routine using the same name as that
used in the library. The new relocatable file is then loaded
with the linker in a specific location and the linker will not
load the library module of the same name. Thus the run time
Iibrary serves as a basis for the user's program environment
and may be used or improved as the program requirements
evolve.

Performance
A certain amount of overhead is expected whenever a

high-level language is used. One can hardly claim that it is
possible to write all programs in Pascal in such a way that
the code generated by the compiler will be as efficient as the
code that would have been obtained by direct assembly
coding. However, as described above, some optimization
has been implemented to generate efficient code: the con-

The 16-bit subtraction routine from the non-debug library
is a relatively short program:

Zintsub PUSH PSW SAVE ACCUMULATOR
DCX H TWO'S COMPLEMENT REG HL (Y)
MOV A.H COMPLEMENT HIGH BYTE
CMA
MOV H,A
MOV A,L
CMA COMPLEMENTLOWBYTE
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tents of registers are remembered over operations, short
jumps are implemented for predefined labels that are
within range, the overhead for parameter passing is in the
receiving routine, and so on. In short, the Pascal/64000
compiler generates good space-efficient code.

The speed of the compiler is 400-600 Iines per minute,
depending on the way the programmer writes the program
and what kind of program is being written. The compiler
speed may also vary from microprocessor to microproces-
sor, since it depends on the level of difficulty and the
amount of work required to generate code for the given
microprocessor.

By overlaying different parts of the compiler, it was made
to fit in 24K words of storage without degrading its perfor-
mance. A diagram of the compiler overlay structure is given
in Fig. 2.

Conclusion
Because ofthe inherent inefficiencies involved in using a

high-level language, users of small computers have in the
past written their programs almost totally in assembly lan-
guage. Pascal/64000 is an alternative. It has all the well-
known advantages of a high-level language in addition to
space-efficient code generation.

The Pascal/64000 compiler is implemented as a subset of
the basic definition of standard Pascal with extensions and
options that make it possible for microprocessor program-
mers to use a high-level language efficiently. The pro-
grammer can ignore the extensions and options and write
standard Pascal, if desired.

Currently the 8080/8085 and ZB0 microprocessors are
supported and others will be supported in the future.
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An Assembler for All Microprocessors
by Brad E. Yackle

HE FIRST PRACTICAL PROGRAMMING TOOL
offered to the software designer was the assembler.
It is a very basic level of programming, since each

instruction usually controls a single function of the proces-
sor. Then higher-level languages were introduced, allow-
ing programmers to generate software faster and easier, and
making code more readable and transportable. However,
assemblers will always be part of a computer system, espe-
cially a microprocessor system. Assembly-level program-
ming is very close to the machine language of the processor
and is therefore good for interacting with hardware and I/O
devices. Since assembler code allows complete control of
the processor, the assembly language programmer can gen-
erate the most efficient code possible. Assembly-level pro-
gramming is the only practical programming tool for cus-
tom or bit-slice processors.

The number of microprocessors on the market and being
developed by industry is very large. Each processor has a set
of instructions that control its functions. Unfortunately,
each processor is different; it has different instructions,
registers, speed, memory size, and so on. One assembler
cannot possibly be general enough to understand the as-
sembly languages of all processors, so typically a new as-
sembler must be generated for each.

The prospect of generating a new assembler for each
processor's assembly language is highly undesirable. First
there is the problem of writing the basic assembler to handle
the syntax of assembly language programming. The assem-
bler'must handle I/O operations as well as parse the operand
fields. It must be able to handle expressions, generate object
code, and give error messages when necessary. All as-
semblers have the same basic syntax for instructions. In
general, assemblers expect an optional label field followed
by an opcode and then some type of operand. However,
each assembler must recognize a different set of instruc-
tions along with register and/or address-type operands.
Therefore, code must be added and/or modified to handle
each new processor. Each time this is done, there is a possi-
bility of generating new errors in the common assembler
functions. Later, if modifications or changes are necessary,
all of the assemblers may have to be modified.

Thus, a new assembler for each new processor language
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introduces two software problems, arising from the dupli-
cation of code. One is the introduction of new errors when
hanslating code from the basic assembler to each new one,
and the second is the problem of software update which is
multiplied with each duplication of code.

64000 Assembler
The assembler for the 64000 Logic Development System

is designed to be flexible enough to understand the instruc-
tion set of any processor's assembly language. This means
that  the 64000 assembler  conta ins some processor-
dependent code to handle the variety of instruction sets.
However, the problem of software duplication is minimized
by making the majority of code processor-independent and
putting the dependent code in tables that the assembler
reads to understand the instructions. An assembler like this
is known as a table-driven assembler. Its main functions are
the same for all Ianguages, and it contains additional infor-
mation in the form of tables to understand processor-
dependent instructions.

The common functions of the assembler cover the in-
teraction with the host computer system. This includes
reading and parsing the source file. The assembler handles
all of the input and output file operations dealing not only
with the source file but the relocatable and list files as well.
It parses the source lines and identifies the instructions for
the particular language. It keeps a symbol table containing
symbols along with associated values and symbol types. It
checks operand fields and flags errors if syntax and/or ad-
dress rules are violated. The assembler is designed to be as
general as possible to allow for the minor differences in the
syntaxes of different processors' assembly languages.

The part of the 64000 assembler that interprets table code
to understand each processor's instruction set consists of a
set of routines that use standard assembler functions but
read the table code to decide which functions to perform.
Thus the assembler can be redefined simply by reading
different table code.

Assembler Operation
The 64000 assembler reads the first line of the source file

and expects to find a key that tells it which type of processor



Ianguage is in the file. It then reads another file that con-
tains the table code for the language. The table code can be
broken into two parts, the opcode set and the set of rules
governing the operand field.

Each processor has a set of instructions, which are given
names by the designers. These names are commonly called
the opcode or mnemonic set ofthe processor, and are gener-
ally abbreviations of the functions performed. For example,
let us suppose we have a processor that has an accumulator
and an instruction to load data into it. An assembly lan-
guage statement to do this might look like the following:

LDA DATA

where the opcode is LDA, which means load (LD) the ac-
cumulator (A) with data found at the address pointed to by
the symbol DATA. The opcode set of the processor is com-
posed of all of its opcodes, including a set of standard
opcodes that control program listing, external and global
symbols, the macro facility, and other functions.

Once an opcode is identified the assembler checks to see
whether it is an instruction that requires table code to un-
derstand the operand. If so, control is transferred to the
special routines that use the table code to control the as-
sembler. The tables instruct the assembler how to parse the
operand field, what values to expect, how to generate the
object code, and what error messages to generate, if any.

Since a set of tables is the only requirement necessary for
the assembler to recognize different languages, we decided
to make this capability available to the user. A user can
generate an assembler for a custom chip or bit-slice proces-
sor, or enhance existing assemblers with custom instruc-
tions, To generate a custom assembler the user must de-
scribe the syntax of each instruction and how to generate
the object code. The 64000 assembler will take care of all
system overhead. It will generate relocatable files that can
be handled by the system linker and will produce list files
like any of the other system assemblers.

Table Processor
The part of the assembler that handles the table code is

really a type of simple processor itself. It takes the specially
coded table information and decodes it into instructions for
the assembler. These instructions call assembler functions,
such as expression handlers and object code generators.
They also allow for arithmetic operations and testing of the
results.

The best way to show how the process works is to give a
simple example. Let us suppose that we have a processor
that has two instructions that have the same type operand
and addressing modes. We will call them LDA and STA, for
load accumulator and store accumulator. The object code
forms of these instructions are both B-bit opcodes and re-
quire one register as their operand. The value ofthe register
is combined with the eight bits of opcode and resides in the
third and fourth bit positions as follows:

00rr0000

The user will predefine to the assembler the registers that
are legal for the instructions, and will give these registers a

value and a type. Let us assume that the user makes the
obvious choice and defines the registers as type "register."

REGISTERS
A : 0 0
B : 0 1
C = 1 0
D = 1 1

The object code that the assembler is expected to produce is
also defined:

LDA : 10000000
STA:  11000000

The assembler will now recognize these mnemonics on
source lines and pass the defined object code to the next set
of table instructions for processing. The table instructions
process the code as foilows.

EXPRESSION General-purpose expression
parser

IF TYPE <> REGISTER THEN GOTO OPERAND-
ERROR

LOAD VALUE Get the register number
SHIFT r.EFT 4 Move to proper position
OR OBIECT-CODE Combines with opcode value
GEN-CODE ABS 8, Generate the code

ACCUMULATOR
DONE Signal to return to assembler

OPERAND ERROR
ERROR IO ERR Invalid operand found
DONE Return

This routine first calls a general-purpose expression
handler designed to parse expressions and return a value
and a type. Next it checks the type returned to make sure it is
one of the predefined registers. If the operand is legal the
value of the register is shifted left four bits and combined
with the object code passed by the main assembler. Line 6
generates eight bits of absolute data to the relocatable file
which is the desired result of the inshuction. If an error is
found then an error message is generated from the instruc-
tion in the ninth line.
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Conclusion
In conclusion, the 64000 assembler is a very general

table-driven assembler. It is easy to maintain and expand to
handle new processors. This increases its reliability, since
the majority of its code is processor-independent and well
tested. This also aids in software update, since we are not

Viewpoints

faced with duplication of code. Assembler tables can be
changed without affecting the main assembler, and the user
has the ability to enhance existing assemblers or generate
others for new languages.

Chuck House on the Electronic Bench

HE ELECTRONICS INDUSTRY is entering the age of VLSI
(very large-scale integration). The potential of VLSI is
staggering. For example, we'll have extremely powerful

32-bit parallel computers with one-megaby'te instruction rates on a
single chip for a few hundred dollars within a very few years. We'll
go from 16K to 64K to 256K to 1M RAM chips in the same time
frame. We'll also be facing some great design challenges because of
these silicon advances. The software crisis is already said to be
upon us, since the cost of developing correct code for ROM-based
designs far outweighs the cost of the silicon for even relatively
high-volume products. The 64000 Logic Development System de-
scribed in this issue was created to address these problems.

The 64000 System and the needs ofVLSI portend a dramatic shift
in emphasis in the types of tools available for designers. For years,
instrumentation has provided analysis capability for use after the
initial design was realized. We are now starting to create synthesis
tools, which aid the designer in realizing products faster, more
accurately, and more productively. This shift from analysis tools to
synthesis tools is fundamental to our ability to take advantage of
the "macro" power of VLSI. It is conceptually impossible to realize
effective designs with millions of gates and millions to billions of
coded instructions in software without new automated techniques
to replace the "brute force" techniques employed in our industry so
far.

A quick example might be the familiar rectangle layouts for
emitter, base, and collector of a transistor. They are replicated
many times, and relocated in tedious fashion by a designer or
draftsman as a function of the desired electrical circuit. True, this
process has been automated in recent years, primarily with
computer-aided artw-ork generators that include checking al-
gorithms to assure that the process design rules are followed. This
has eliminated some of the drafting and spatial relations tedium,
but it has had little impact upon the creative design process. A
more useful step might be the macro-cell approach: a series of
functional cells is preprocessed in silicon, and a simple design
algorithm for interconnecting cells creates the mask set to realize
the equivalent custom gate array required.

At a much higher synthesis level, it's conceivable that the
mathematical transfer function of the desired IC could be entered
into a computer-aided design tool, which would generate the mask
sets to create the IC. This is the goal of the California Institute of
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Technology "Bristleblocs" proiect, which has both industrial and
academic sponsors. The premise of these attempts to work at a
macro level is that the view of the forest allows a better perspective
for the designer than a consistent and unremitting examination of
each tree in the forest, or as some frustrated designers express it,
"Chewing on the tree bark incessantly, trying to find the forest."

Adoption of the premise that such high-Ievel design is desirable
and practical is necessarily rooted in two major assumptions. First,
tools must exist that translate the designer's high-level constructs
into correct, effective, low-Ievel realizations. These are the syn-
thesis tools mentioned above. Second, analysis tools must be
adapted to this environment, which means that they must provide
analysis functions at every hierarchical level from high to low,
much as a microscope or TV camera has pan or zoom capability.

One additional requirement is imposed by the magnitude of the
task, since many projects are designed, produced, and maintained
by increasingly large teams of people. Thus, synthesis and analysis
tools are increasingly obliged to Iink to each other simultaneously,
across large distances, across cultural and educational barriers, and
even across time.

These are stiffrequirements, but then so are the challenges facing
designers if these requirements are not satisfied. How might they
be met? I think that we can see the day, not too distant, when
engineers will have an electronic bench, much as we discuss elec-
tronic moil and electronic offices and electronic homes. Such an
e.lectronic bench wiII satisfy the three requirements of synthesis,
analysis, and linking.

To illustrate this concept, Fig. 1 portrays a tylpical product life

cycle for a digital product, along with the classical design aids and
analysis tools used by most companies today. There are several
points worth noting. First, virtually all design aids and analysis
tools in use today are not  l inked in any data base or  even
measurement-interactive manner. Second, the level of synthesis
capability in the design aids is extremely primitive. Third, the level
of zoom from high-level analysis to low-level is likewise primitive.
Fourth, the operator interface is variable, and quite formidable,
from one piece of equipment to another. Examining the needs that
VLSI design imposes, these conditions are clearly unacceptable.

There are some current examples ofthe electronic bench concept
at such places as automotive design research centers, airframe
manufacfurers, and the Iarger computer and semiconductor design
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Fig. 1. Deslgn aids and analysis tools used at various points
in the life cycle of a typical digital product.

centers. These centers, usually built around computer-aided draft-
ing systems, are very expensive, but also very productive and

cost-effective. Just as the computer mainframe and minicomputer
manufacturers have developed precursors of the type of software
development system exemplified by the 64000 System, these CAA
and CAD centers point the way toward the electronic bench.

In effect, the solution will embody an intelligent terminal or

work station that can provide the capabilities of any required de-

sign aid or analysis function. Work performed at this work station
will automatically link to a shared data base for the entire program' .
which includes the R&D functions, production test, service diag-
nostics, and documentation. Likewise, environmental and life test
data will become the beginning ofa Iibrary ofservice datathat links
with lab analysis, production data, and user performance data to
promote design improvements and better field-support diagnostic
procedures.

It is not hard to postulate such capabilities or their desirability'
What has been difficult is a cost-effective and performance-

effective realization. There are three major handicaps in this regard

when we examine the realities of existing digital analysis tools, to
say nothing of the shortage of effective synthesis tools.

1. The user interface of most instruments is very complex, and the
commonality of terms, functions, and operations is very low. For
example, the specific functions available by name on the front
panel of a storage oscilloscope, a logic timing analyzer, and a serial
data bus analyzer bear little resemblance to each other. Each front
panel takes considerable "gett ing used to" for a beginning
operator, and knowing one of them well can often seem more a
handicap than a help when trying the next machine,
2. Today's realizations of this equipment are sophisticated,
reasonably expensive, and relatively bulky. The thought of creat-
ing an integrated solution has historically been dismissed as not
practical in terms of size, heat, weight, and cost.
3. Linking of many measurement hierarchies (the zoom concept)
has not been required or practical because of the available in-
strumentation, and because the problems being tackled could be

solved by "brute force" techniques.
The 64000 architectural concept may serve to illushate how

these handicaps might be diminished. The foremost problem, the
human interface, is addressed via a standard typewriter keyboard,
along with the guided syntax and softkey format. The versatility of
screen graphics for menu selections or guided prompting is well
established in instrumentation by now. It is a simple extension to
provide conversion from one type of equipment to another. The
difficulty with such a concept is the reality of its implementation.

Let's consider the manner in which the guided syntax structure
operates. The guided syntax softkeys represent another important
enhancement of the softkey-with-"help" approach embodied in
several of HP's more recent computer systems, Not only do these
keys provide prompting of the next correct or allowable entries, but
they also allow full flexibility for system reconfiguration as the
resident operating system module is swapped from the disc.

Notice the significance ofthis architecture. The stored program
that determines the machine characteristics that appear to the
operator is totallyresident on disc. Thus,redefining the instrument
is eosy, and the operating system reconfiguration time is about
one-third of a second! Moreover, the guided syntax approach re-
moves the need for a different set ofkeycaps on the front panel, and
the user is never faced with relearning the panel functions as the
instrument changes.

Thus, the 64000 has a system architecture that links all data files,
provides redefinition of effective functions at each work station,
and allows easy operator interaction with those significant
changes. The major remaining tasks are two-fold: to provide ex-
tended operating system enhancements in the guided syntax for-
mat, and to provide data acquisition modules for specific functions
that may be required.

This flexibility might be employed as an emulating terminal for
any computer system, as the following whimsical softkey choices
illustrate.

640005 HP 1000 HP 3000 IBM
TERM TERM TERM

DEC APPI,E HP 85A ETC
TERM TERM

When s+ooos is pressed the choices would be (the cunent wakeup
mode):

EDIT COMPILE ASSEMBLE LINK FMULATE PROM PGM (CMDFILE) ETC

When rnir is pressed, the rotr module is brought in from the system
disc, and these become the kev labels:

INSERT REVISE DELETE FIND REPLACE <LINE #> END ETC

An obvious set of choices under an Analyzer key choice might be:

LoSic LoSic Serial Analog Digital Network Spectrum ETC

State Timing State O'scope O'scope Analyzer Analyzer

Analyzer Analyzer Analyzer

The trace point conditions for the state analyzer, the timing
analyzer and the scope could be the same, providing the zoom
capability mentioned earlier. It becomes practical to consider mi-
croprogrammable measurement intelligence, which could modify
the degree of zoom or pan according to dynamic decisions about
the observed data. Obviously, the data base linkage methods could
also admit software control of multiple measurements at multiple
stations for simultaneous analysis of major system problems'
Perhaps the most productive improvements will come with hiSh-
level software analyzers, linked to the greatly improved code gen-
eration capabilities described herein. These tools must not only
provide code generation, editing, and debug aid, but also valida-
tion, verification, optimization, and maintenance functions' The
64000 already provides an important enhancement for these needs'
Further extensions are imperative for the effective reduction of the
software bottleneck in our industrv.
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The technology that allows us to consider the true possibility of
such a system is based heavily upon the VLSI extensions that the
system intends to support. For example, by reducing major equip-
ment such as a sophisticated logic state analyzer to a one or two-
card module allows zoom potential, because several different
modules can be resident in the card cage of a work station. Also, a
cluster network can be composed of different configurations in
each work station, and potentially could even include a desktop
computer for information graphics or management information
systems. A significant problem in terms of computer power-IC
cell layout and lead routing, or PC board layouts-could be routed
to a major computer network from the cluster as well.

The 64000 described in this issue already takes a significant step
in microcomputer software development integration by virtue of
its LSI computer support in each work station, guided syntax
interaction to allow conversion from one function to another, and
four-bus interaction capability, which allows significant data base
and measurement networking. The programming effectiveness for
designers developing strucfured code on this system, debugging it
in breadboard systems, and moving toward final product is dra-
matic, and it is a contribution to synthesis, more than to analysis.
This shows up most dramatically in larger project teams, where the
Iinked files and the data base management system help to mitigate
the classic communication difficulties of large teams. Hardware
system synthesis, whether at an IC or PC board level, should be
amenable to similar enhancement. The hardest task in my view is
the question of effective benchmarking of simulations, which con-
ceptually is possible, but realistically seems relatively difficult to
attain.

The next few years should see significant development oftools to
enable the electronic bench concept to be realized. This electronic
bench will encompass the necessary synthesis, analysis, and link-

ing functions. Clearly the costs of such powerful automated design
centers will be dramatically reduced, concurrent with substan-
tially improved combinational performance. With the aid of such
instrumentation concepts, we hope tir support the design and
analysis requirements of the VLSI era.
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